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ABSTRACT

Subgraph counting is a fundamental task in network analysis. Typi-

cally, algorithmic work is on total counting, where we wish to count

the total frequency of a (small) pattern subgraph in a large input

data set. But many applications require local counts (also called ver-

tex orbit counts) wherein, for every vertexv of the input graph, one

needs the count of the pattern subgraph involving v . This provides

a rich set of vertex features that can be used in machine learn-

ing tasks, especially classification and clustering. But getting local

counts is extremely challenging. Even the easier problem of getting

total counts has received much research attention. Local counts

require algorithms that get much finer grained information, and the

sheer output size makes it difficult to design scalable algorithms.

We present EVOKE, a scalable algorithm that can determine

vertex orbits counts for all 5-vertex pattern subgraphs. In other

words, EVOKE exactly determines, for every vertex v of the input

graph and every 5-vertex subgraph H , the number of copies of

H that v participates in. EVOKE can process graphs with tens of

millions of edges, within an hour on a commodity machine. EVOKE

is typically hundreds of times faster than previous state of the

art algorithms, and gets results on datasets beyond the reach of

previous methods.

Theoretically, we generalize a recent łgraph cuttingž framework

to get vertex orbit counts. This framework generate a collection

of polynomial equations relating vertex orbit counts of larger sub-

graphs to those of smaller subgraphs. EVOKE carefully exploits the

structure among these equations to rapidly count. We prove and

empirically validate that EVOKE only has a small constant factor

overhead over the best (total) 5-vertex subgraph counter.
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1 INTRODUCTION

One of the most important algorithmic techniques in network anal-

ysis is subgraph counting, also referred to as motif counting or

graphlet analysis. Subgraph counting is basically the problem of

counting the frequency of small pattern subgraphs in a large input

graph. These techniques have found applications in bioinformatics

and biological networks [21, 31, 32], social networks [17, 26, 39, 40,

44], community and dense subgraph detection [8, 36, 42, 43], social

sciences [11, 13, 20, 30], andmany other applications [5, 7, 16, 18, 46].

(Refer to the tutorial [37] for more details on applications.)

LetG denote the input graph, that we wish to analyze. While the

typical description of subgraph counting asks for the total count

of a pattern subgraph in G, many applications require local counts.

(These are also referred to as graphlet distributions, orbit counts, or

k-profiles.) For a given set of patterns, the aim is to find, for every

vertex v of G, the number of patterns that v participates in. This is

a much finer grained description of the graph, and can be used to

generate features for vertices. A compelling application of these

local counts are the graphlet kernel, where local counts are used

to construct vector representations of vertices for machine learn-

ing [38]. In many applications (documented in ğ1.3), one typically

wants local counts for all pattern subgraphs of up to a given size.

Subgraph counting is an extremely challenging problem. As

shown in previous work, even for a moderate graph with a few

million edges, counts of (say) 5-vertex pattern subgraphs can be

in the order of billions to trillions [6, 22, 29]. This combinatorial

explosion is often tamed by clever counting methods that avoid

enumeration, but these are tailored to global counts inG . There has

been recent work on randomized methods for local counting, but

these require large parallel hardware even for graphs with tens of

millions of edges [15].

1.1 Problem Description

The input G = (V ,E) is a simple, undirected graph. Our aim is to

get local counts, for every vertex in G, for all the patterns given in

Fig. 2. Fig. 2 shows all connected subgraphs with at most 5 vertices.

We will refer to these as patterns. (We do not focus on disconnected
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Figure 2: All vertex orbits for 5-vertex patterns. Within any pattern, vertices of the same color form an orbit.

across graphs from different domains. Also, the VOCs of differ-

ent orbits within the same pattern behave differently, showing the

importance of getting such fine-grained information.

On 4-VOCs: We do not consider this as a new contribution, but

a salient observation for those interested in subgraph counting.

EVOKE determines all 4-VOCs as a preprocessing step, based on

ideas in [29] and Ortmann-Brandes [27]. As stated in these results,

the key insight is an implementation of an old algorithm of Chiba-

Nishizeki for 4-cycle counting [12]. This method is incredibly fast,

and computes 4-VOCs in minutes. (Even for the largest instance

of more than 100M edges, it took less than an hour.) For example,

for a LiveJournal social network with 42M edges, EVOKE took ten

minutes on a commodity machine (we got the same time even on a

laptop). Contrast this with previous results for counting 4-VOCs

for the same graph, which used a MapReduce cluster [15]. (We note

that EVOKE, and the other results, are technically computing edge

orbit counts, a more general problem.)

1.3 Related Work

Subgraph counting is an immensely rich area of study, and we

refer the reader to a tutorial for more details [37]. Here, we only

document results relevant to our problem. For this reason, we do

not discuss the extremely large body of work on triangle counting

(the most basic subgraph counting problem).

Vertex orbit counts beyond triangles have found significant uses

in network analysis and machine learning. Notably, Shervashidze-

Vishwanathan-Petri-Mehlhorn-Borgwardt defined the graphlet ker-

nel, that uses vertex orbits counts to get embeddings of vertices

in a network [38]. Ugander-Backstrom-Kleinberg showed that 4-

vertex orbit counts can be used for role discovery and distinguish-

ing different types of graph neighborhoods [44]. In an exciting re-

cent use of orbit counts, Rotabi-Kamath-Kleinberg-Sharma showed

that four and five cycle counts can be used for weak tie discovery

in the Twitter network [35]. Yin-Benson-Leskovec have defined

higher-order clustering coefficients, which are ratios of specific or-

bit counts [48, 49]. There is a line of work on the surprising benefits

of using cycle and clique counts as vertex or edge weights, to find

denser and more relevant communities in networks [8, 9, 36, 42, 43].

We now discuss the literature on algorithms for subgraph count-

ing. Ahmed-Neville-Rossi-Duffield gave the first algorithm that

could count (total) 4-vertex subgraph counts for graphs with mil-

lions of edges [6]. Their PGD package was a significant improve-

ment over past practical work for this problem [18]. Pinar-Seshadhri-

Vishal designed the ESCAPE algorithm for practical (total) 5-vertex

subgraph counting [29]. While these algorithms employed many

clever combinatorial ideas, they did not focus on vertex orbit count-

ing. There was concurrent development of sampling algorithms

that are orders of magnitude faster, such as path-sampling [22] and

the MOSS package [45].

Elenberg-Shanmugam-Borokhovich-Dimakis gave algorithms

for 3, 4-vertex orbit counting [14, 15]. They employed a randomized

algorithm, and proved convergence through polynomial concentra-

tion inequalities. The number of samples required for concentration

was large, and they used Map-Reduce clusters to process graphs

with tens of millions of edges. It was observed implicitly in the ES-

CAPE package and explicitly, by Ortmann-Brandes [27] that ideas

from a classic result of Chiba-Nishizeki [12] gave a faster, exact

algorithm for 4-vertex orbits.

The state of the art for local counting of 5-vertex orbits is the

ORCA package of Hočevar-Demšar [19]. The algorithm is based

on a method to build sets of linear equations relating various orbit

counts. This saves computing all orbit counts independently. With

some careful choices, ORCA tries to perform enumeration on the

łeasierž counts, and get the łharderž counts through the linear equa-

tions. There were also results on generating these linear equations

auotmatically [24, 25]. We note that ORCA also has algorithms

to generate 5-edge orbit counts, but this takes even longer than
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5-VOCs. We leave the generalization of EVOKE to edge orbit counts

as future work.

Rossi-Ahmed-Carranza-Arbour-Rao-Kim-Koh proposed a par-

allel algorithm for counting typed graphlets (subgraph patterns),

which are a generalization of subgraph patterns to heterogeneous

networks [34].

2 PRELIMINARIES

The input is an undirected simple graphG = (V ,E), with n vertices

andm edges. The patterns of interest are all connected subgraphs

with at most 5 vertices, denoted H0, . . . ,H29, as shown in Fig. 2.

Previous results in [29] show that disconnected pattern counts can

be determined by inclusion-exclusion from all connected pattern

counts. Hence, we only focus on connected pattern subgraphs.

We now formally define orbits. The definitions below are taken

from Bondy and Murty (Chapter 1, Section 2) [10].

Defn. 1. Fix labeled graph H = (V (H ),E(H )). An automorphism

is a bijection σ : V (H ) → V (H ) such that (u,v) is in E(H ) iff

(σ (u),σ (v)) is in E(H ).

Define an equivalence relation among V (H ) as follows. We say

that u ∼ v (u,v ∈ V (H )) iff there exists an automorphism that maps

u to v . The equivalence classes of the relation are called orbits.

Fig. 2 shows the 73 different orbits. Within any Hi , all vertices

in an orbit are colored the same. For example, in H28, there are

two different orbits (blue and red). The blue (resp. red) vertices

can be mapped to each other by automorphisms, and are therefore

łequivalentž.

Technically, we denote orbits as pairs (H , S), where H is a (la-

beled) pattern subgraph and S is the subset of vertices forming the

orbit. Consider pattern H and orbit θ = (H , S). We denote:

• orb(H ): The set of orbits in the pattern H .

• sz(θ ): |S |, the number of vertices in the orbit θ .

Induced vs non-induced: A non-induced subgraph is obtained

by taking a subset of edges. An induced subgraph is obtained

by taking a subset of vertices and considering all edges and non-

edges among them. (A clique contains all non-induced subgraphs

of smaller sizes, but the only induced subgraphs it contains are

smaller cliques.) A theorem in [29] proves that the vector of non-

induced subgraph (up to a given size) counts can be converted to

the corresponding induced counts, through a linear transformation.

A directed generalization of the arguments holds for k-VOCs, in

that non-induced orbit counts (for each vertex) can be converted to

induced orbit counts by a linear transformation. For space reasons,

we omit details and give the proof in the full version [28]. It is a

small linear transformation of the 73-dimensional orbit count for

each vertex, and is efficient to do on all vertices.

EVOKE computes both non-induced and induced counts. Algo-

rithmically, it is easier to compute non-induced counts first; hence

we shall only refer to them in the technical description.

We are ready to define VOCs.

Defn. 2. Fix an orbit θ = (H , S) and a vertex v ∈ V (in the input

graph G). A match of θ involving v is a non-induced copy of H in G

such thatv is mapped to a vertex in S . Call two matches equivalent, if

one can be obtained from the other by applying an automorphism. We

Wedge Diamond Directed 3-path Directed bipyramid

Figure 3: Fundamental patterns enumerated for orbit counting

define DM(v,θ ) to be the number of distinct matches of θ involving

v .

Our aim is to compute the entire list of numbers {UM(v,θ )},

over all v ∈ V and all θ in Fig. 2.

Degree ordering: We will use the degree orientation, a funda-

mental tool for subgraph counting that was pioneered by Chiba-

Nishizeki [12]. We will convert G into an DAG G→ as follows. Let

≺ denote the degree ordering of G. For vertices i, j, we say i ≺ j, if

either d(i) < d(j) or d(i) = d(j) and i < j (ties broken by vertex id).

The DAG G→ is obtained by orienting the edges with respect to

≺ ordering. In both the algorithm and analysis, all references to

directed structures are with respect to G→.

Notation for subgraph counts: In formulas for orbit counts,

we will use the following notation. We use d(v) for the degree of

vertex v . We will useW (G), D(G), DP(G→), and DBP(G→) for the

total count of wedges, diamonds, directed 3-paths, and directed

bipyramids respectively. These subgraphs are shown in Fig. 3.

2.1 Main theorem

Theorem 3. There is an algorithm for exactly counting all VOCs

for orbits 0-72, whose running time is O(W (G) + D(G) + DP(G→) +

DBP(G→) +m + n).

This theorem is analogous to that of ESCAPE ([29]) which gives

the same asymptotic running time for just total counting of 5-vertex

subgraphs. We consider it quite significant that one gets the same

asymptotic running time, despite the output being much larger

and far more fine-grained. We stress that the EVOKE algorithm is

significantly different than ESCAPE, since the orbit counts behave

differently from total subgraph counts. The final proof is long and

technical, so we will only provide the high-level ideas here and

leave the final proof to the full version [28]. 1

3 MAIN IDEAS

EVOKE builds off the ideas in ESCAPE for total subgraph counts.

First, we explain difficulties in directly applying previous tech-

niques.

Pattern cutting: Intuitively, a 5-vertex pattern can be łcutž into

smaller patterns that can be explicitly enumerated. An enumeration

over these smaller patterns can then be used to get a subgraph count.

As an example, consider the 4-path (H9). By cutting at the center

(green) vertex, one gets two wedges. Thus, we can basically square

the number of wedges that end at a vertex, and then sum this to

get the total number of 4-paths. (Not quite, there is some inclusion-

exclusion required to łcorrectž this count, but it is fairly easy to

1The full version is available at https://arxiv.org/abs/1911.10616
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work out.) But this fails for orbit counting. The 4-path has three

distinct orbits, and the idea above only works for the green orbit.

This is even more problematic for patterns like H21, H25, H27,

H28, where the removal of certain vertices does not łcutž the pattern

into convenient smaller pieces. The main insight in ESCAPE was

that all 5-vertex patterns have a convenient cutset of vertices, whose

removal leads to fragments that can be easily enumerated. This

is not true for orbits. We do have the freedom of choosing the

convenient cutset.

From 4-edge orbit counts to 5-VOCs: Our main insight is

that the suitable generalization of the pattern cutting approach

connects 5-VOCs to 4-edge orbit counts. We essentially prove that

nearly all the orbit counts in Fig. 2 for a vertex v can be related

(by non-trivial polynomial equations) to the edge orbits counts (of

4-vertex subgraphs) on edges incident to v . The edge orbits of 4-

vertex subgraphs are given in Fig. 5b. These edge orbits counts can

be obtained by implementations of the Chiba-Nishizeki clique and

4-cycle counter [12], with extra inclusion-exclusion tricks to get all

counts. EVOKE uses this as a preprocessing step.

Careful indexing during enumeration: Even with the previ-

ous ideas, we still need an efficient implementation that can gener-

ate all the counts. We design a collection of vertex and edge indexed

data structures, that are updated by an enumeration of the patterns

shown in Fig. 3. Somewhat surprisingly, we show that as these pat-

terns are enumerated, one can quickly update these data structures

and generate all the orbit counts. This leads to Theorem 3. The

final proof is quite technical and has many parts (due to the large

number of orbits).

4 THE CUTTING FRAMEWORK FOR ORBITS

In this section, we describe the cutting framework for orbits. As

mentioned earlier, this is a generalization of ideas in [29].

First, we formally define a match, which is a non-induced copy

of H . For a set C where C ⊆ V (H ), we use H |C to denote the

subgraph of H induced on C . We also denote the remaining graph

after removing C from H , by H \C .

Defn. 4. Amatch ofH inG is a bijection π : T → V (H )whereT ⊂

V and for any two vertices t1 and t2 inT , (t1, t2) ∈ E if (π (t1),π (t2)) ∈

E(H ).

Defn. 5. Fix an orbit θ = (H , S) and a vertex v ∈ V . We define

M(v,θ ) to be the set of all (not necessarily distinct) matches π : T →

V (H ) of H , where T ⊂ V , such that v ∈ T and π (v) ∈ S . We use

M(v,θ ) to denote |M(v,θ )|.

Defn. 6. For any orbit θ = (H , S) we define λ = (H , i), where i is

a vertex in S , as a representative of θ .

We use r (θ ) to denote its representative (H , j), where j is the vertex

with the smallest id in S .

Let λ = (H , i) be a representative of an orbit θ . Abusing notation,

for a vertex v ∈ V , we use M(v, λ) to denote the set of matches

π ∈ M(v,θ ) where π (v) = i . Analogously, we use M(v, λ) to show

|M(v, λ)|. We can see that M(v,θ ) = sz(θ ) ·M(v, λ). Next, we define

fragments in H , which are the result of cutting H using a cut set.

Defn. 7. Let H be a subgraph pattern and consider a non-trivial

cut set C ⊊ V (H ). Let S1, S2, . . . be connected components of H \C .

The fragments of H obtained by removing C are the subgraphs of H

induced by C ∪ S1,C ∪ S2, . . .. We denote the set of these fragments

by FragC (H ).

A partial match π : T → V (H ) is similar to a match, except that

it is an injection, and is not surjective, thus |T | < |V (H )|.

Defn. 8. A match π : T → V (H ) extends a partial match σ :

T ′ → V (H ) if T ′ ⊂ T and for any vertex t in T , π (t) = σ (t). We

denote the number of matches π of H that extend σ , by degH (σ ).

Consider a match σ of H |C . For σ to extend to a match of H ,

it is sufficient that it extends to disjoint matches of all fragments

in FragC (H ). Merging these extensions leads to a match of H . If

extension of σ to these fragments are not disjoint, merging them

leads to a match of a different patternH ′, which we call a shrinkage.

Defn. 9. Let H , H ′ be subgraph patterns, C ⊊ V (H ) be a cut set

of H , and FragC (H ) = {F1, F2, . . . , F |Frag
C
(H ) |}. Let τ : H |C → H ′

be a partial match of H ′. For each Fi ∈ FragC (H ), let πi : Fi → H ′

be a partial match of H ′ in H that extends τ . We call {τ ,π1, π2, . . . ,

π |Frag
C
(H ) |} a C-shrinkage of H into H ′ if for each edge (s, t) ∈

E(H ′), there exists an edge (a,b) in fragment Fj ∈ FragC (H ) such

that πj (a) = s and πj (b) = t .

We use ShrinkC (H ) to denote the set of patterns (up to isomorphism)

H ′, to which there exist at least a C-shrinkage from H .

Defn. 10. Consider graph H , H ′ ∈ ShrinkC (H ), λ = (H , i), and

λ
′
= (H ′

, j). We define numShC (λ, λ
′) to be the number of distinct

C-shrinkages of H into H ′ where τ (i) = j.

Lemma 11. Consider a pettern H , an orbit θ = (H , S), a represen-

tative λ = (H , i) of θ , and a cut set C in H such that i ∈ C . Then,

M(v, λ) =
∑

σ ∈M(v,(H |C ,i))

∏

F ∈Frag
C
(H )

degF (σ )

−
∑

H ′∈ShrinkC (H )

∑

θ
′∈orb(H ′),
λ
′
=r (θ ′)

numShC (λ, λ
′) · DM(v, λ′)

Proof. Consider any match σ of H |C in M(v, (H |C , i)), and all

sets of maps {π1, . . . ,π |Frag
C
(H ) |} where πℓ is a copy of Fℓ ∈

FragC (H ) that extends σ . The number of such sets is exactly:

∑

σ ∈M(v,(H |C ,i))

∏

F ∈Frag
C
(H )

degF (σ ) (1)

Consider one of these sets of maps {π1, . . . ,π |Frag
C
(H ) |}, let

V (πℓ) be the set of vertices that πℓ maps to Fℓ . If all V (πℓ) \V (C)

are disjoint, we get a match in M(v, λ). Therefore, Each match

of H in M(v, λ) is counted exactly one time in (1). But for each

orbit θ ′ = (H ′
, S ′) where H ′ ∈ ShrinkC (H ), we have also counted

some matches in M(v,θ ′). The number of distinct matches of θ ′

involving v is DM(v,θ ′). Let λ′ = (H ′
, j) be r (θ ′). The number of

distinctC-shrinkages ofH intoH ′, where τ (i) = j , is numShC (λ, λ
′).

Thus, per each orbit θ ′, we have counted numShC (λ, λ
′) ·DM(v, λ′)

matches which should now be subtracted from (1).

The reason we considered only distinct matches of λ′ involving

v is that the shrinkage from H to H ′ gives us the labeling of H ′ and

the set of maps {π1, . . . ,π |Frag
C
(H ) |}, which resulted in counting

this match, dictates the match. Also, notice that the shrinkage
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Figure 4: Application of Lemma11 for vertex orbit 26

determines the vertex in H ′ that v is mapped to. That is why we

consider number of shrinkages for a representative of θ ′. □

Corollary 12. As mentioned, M(v,θ ) = sz(θ )·M(v, λ). Therefore,

we can derive DM(v,θ ), which is the number of distinct matches of θ ,

as follows: DM(v,θ ) = sz(θ ) ·M(v, λ)/|Aut(H )|.

Application of Lemma11 for vertex orbit 26:We will show

how this lemma works applying it to H12 and computing VOCs

for a vertex v ∈ V . Let θ26 = (H , S), where S = {2, 3} and H is as

shown in Fig. 4, denote orbit 26. Let the representative λ26 be (H , 2).

Let triangle {1, 2, 3} be the cut set C . So, FragC (H ) = {F1, F2} as

we can see in Fig. 4. Let λ̂ = (H |C , 2) be a representative of orbit

3 (the only orbit in the cut set). Every triangle in G incident to

v is a match in M(v, λ̂). Each such triangle has two mappings to

H |C . consider triangle {u,v,w} in G. Vertex v has to be matched

to vertex 2, therefore one match (A) is σ (u) = 1, σ (v) = 2, and

σ (w) = 3, and the other match (B) is σ (u) = 3, σ (v) = 2, and

σ (w) = 1. For match (A), degF1 (σ ) · degF2 (σ ) = (d(v) − 2)(d(w) − 2),

and degF1 (σ ) · degF2 (σ ) = (d(v) − 2)(d(u) − 2) for match (B).

The only possible shrinkage ofH is to a diamondH ′, as shown in

Fig. 4. Let orbit θ13 = (H ′
, S ′), where S ′ = {2, 3}, show orbit 13. We

can see that in any C-shrinkage of H into H ′, τ (2) ∈ S ′. Let λ13 =

(H ′
, 2) be a representative of θ13. Notice that numShC (λ26, λ13) = 2.

In one case we set τ (1) = 1, τ (2) = 2, τ (3) = 3, π1(4) = 4, and

π2(5) = 4. In the other case, we set τ (1) = 4, τ (2) = 2, τ (3) = 3,

π1(4) = 1, and π2(5) = 1. The set of maps {τ ,π1,π2} in both cases

forms a C-shrinkage of H into H ′ where τ (2) = 2.

M(v, λ26) =
∑

t=⟨u,v,w ⟩ triangle

[(d(v) − 2)((d(u) − 2)

+ (d(w) − 2))] − 2 · DM(v, λ13) (2)

Note that sz(θ26) = 2 and H has two automorphisms, so (by

Corollary 12) DM(v,θ26) = M(v, λ26) .

5 GETTING ORBIT COUNTS

Given space constraints, it is not possible to describe EVOKE com-

pletely or give a full proof of Theorem 3. Formally, there is a collec-

tion of more than fifty equations similar to (2). For each of them,

we verify that they can be computed through an enumeration of

the patterns in Fig. 3, assuming that all edge orbits of Fig. 5b are

available. We leave these (tedious) details to the full version [28],

and give a few examples here.

Getting edge orbit counts of 4-vertex subgraphs: There are

eleven edge orbits for 4-vertex subgraphs as shown in Fig. 5b. For-

mally, one can prove the following. (Actually, one can get a much

better running time, but this is not important for our main theorem.

Details in full version. [28]) For an edge (u,v), we use Ei (u,v) to

denote the count of the ith edge orbit (where i is from Fig. 5b).

Theorem 13. All vertex and edge orbit counts for 4-vertex patterns

can be obtained in time O(W (G) + D(G) +m + n).

Getting VOCs: We demonstrate the main ideas through a num-

ber of examples.

Orbit 26: The pattern cutting framework gives (2). We can pre-

compute and store degrees at all vertices. During an enumeration

of all triangles, one can compute the summand for each triangle.

The triangles can be enumerated inO(W (G)) time (indeed, it can be

done even faster using orientations). Orbit 13 belongs to a 4-vertex

pattern, so DM(2, λ13) is obtained from Theorem 13.

Orbit 37: let λ37 = r (θ37) and λ12 = r (θ12), then

DM(u, λ37) =
∑

v ∈N (u)

[E5(u,v)(d(v) − 2)] − 2DM(u, λ12). (3)

After storing E5-values on each edge, one can get this VOC by a

triangle enumeration. Orbit 12 belongs to a 4-vertex pattern.

Overall, this technique can analogously handle all orbits, barring

5-cycle and 5-clique (each of which as a single orbit). 5-cliques can

be directly enumerated in timeO(DBP(G→)), a consequence of the

classic Chiba-Nishizeki algorithm [12] and explicitly proven in [29].

Dealing with 5-cycles: This special case is handled in the fol-

lowing theorem, which gives a significant strengthening of the

5-cycle counter in ESCAPE, which only gave a global count in the

same running time.

Theorem 14. Vertex orbit counts for the 5-cycle can be computed

in time O(W (G) + DP(G→) +m + n).

Proof. As shown in Fig. 5a, there are three different 5-cycle

DAGs up to isomorphism, and each has exactly one directed 3-path,

such that the remaining wedge is not an in-in wedge. In Fig. 5a, this

directed 3-path is labeled i, j,k, l , andw is the center vertex of the

wedge. By a directed wedge enumeration, we can precompute the

number of such wedges between all pairs of vertices. We enumerate

over the directed 3-paths: for every directed 3-path we get between

vertices i and l , we already know the number of relevant directed

wedges between i and l . This allows us to increment the orbit

counts for vertices i, j,k, l , by the number of wedges. (There is some

inclusion-exclusion to fix the count; details in the full version [28].)

This process does not update the orbit count for vertex w . Let

P(i, l) be the number of directed 3-paths from i to l . To compute the

orbit counts for vertexw , we enumerate in-out and out-out wedges

between i and l , and add P(i, l) to the orbit count of vertexw . Again,

there is a possible inclusion-exclusion error to be fixed, since the 3-

paths (corresponding to P(i, l)) potentially intersect with the wedge

under consideration. We need to subtract out the counts of specific

directed tailed triangles (Details in full version [28].) Overall, we

can get VOCs for 5-cycle in the stated time.

□

6 EXPERIMENTAL RESULTS

We implement EVOKE in C++. We ran experiments on a commodity

machine from AWS EC2: R5d.2xlarge, which has Intel Xeon Plat-

inum 8175M CPU @ 2.50GHz with 4 cores and 1024K L2 cache (per
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Figure 5: (a) All different 5-cycle DAGs up to isomorphism. (b) All edge orbits of 4-vertex patterns.

core), 34MB L3 cache, and 64GB memory. For running EVOKE on

the com-orkut graph (117M edges), we used the more powerful

R5d.12xlarge EC2 instance (with 384GB RAM). We actually run

ORCA for 5-vertex patterns on the larger machine for any instance

with more than 1M edges. The EVOKE package is available at [2]

as open source code.

We used large graph datasets from the Network Repository [33],

SNAP [23], and Citation Network Dataset [1, 41]. We removed

directions from edges, and omitted duplicates and self loops. Tab. 1

includes the number of nodes, edges, and triangles for all the graphs

we used. We also run EVOKE on wiki-en-cat, a bipartite graph

from the KONECT network repository [3, 4, 47].

As mentioned earlier, we compare our results with ORCA [19]

which is the state of the art algorithm for computing all 5-VOCs.

The runtimes of ESCAPE, EVOKE, and ORCA is given in Tab. 1. We

also state the time for just counting 4-VOCs. When we do not report

a time for ORCA, it implies that either ORCA ran out of memory or

ran more than 1000 times the EVOKE running time. In all the results,

the time includes the I/O, so we account for the time required to

print the (large) output into files. As mentioned later, there is a

parallel implementation of EVOKE, but all run times reported are

of the sequential implementation (to have a fair comparison with

ORCA).

Running time of EVOKE:As seen in Tab. 1, for many instances

of counting 5-VOCs, we simply cannot get results with ORCA.

For all graphs larger than web-google-dir, ORCA-5 runs out of

memory even on the more powerful EC2 instance, or was stopped

after a thousand times the corresponding EVOKE running time has

passed (shown by blue bars in Fig. 1). When ORCA does give results,

the speedup of EVOKE is easily in the orders of hundreds. Fig. 1

gives the speedup as a chart. EVOKE makes 5-VOCs computation

feasible, for graphs with tens of millions of edges. ORCA is unable to

process any graph in that size range. Even for the large com-orkut

graph with over 100M edges, EVOKE gets all counts in two days.

As an aside, for counting 4-VOCs, EVOKE runs typically in min-

utes, consistent with previous work [27, 29].

Comparison with ESCAPE: Theorem 3 shows that the asymp-

totic upper bound given for ESCAPE in [29] is also an asymptotic

upper bound for EVOKE run time. We are able to validate this in

practice. Fig. 6a shows the ratio of runtime of EVOKE over ESCAPE

for 5-vertex patterns. Note that ESCAPE counts subgraphs and

EVOKE computes orbit counts for orbits in those subgraphs. As we

can see in Fig. 6a, in all our experiments the ratio is typically below

2 and never more than 4. We believe this finding to be significant,

since obtaining the richer information of 5-VOCs is just as feasible

as getting exact total counts.

Runtime distribution and parallel speedup: Typically, a few

orbits take the lion’s share of the running time. Fig. 6b shows the

split-up of running time over the various orbits. We group them

into four classes: the 5-clique, the 5-cycle, the orbits of H25 and H27

(these require diamond enumerations), and everything else. By and

large, just the 5-cycle and 5-clique orbits account for half the time.

It is straightforward to parallelize the computation of these dif-

ferent groups. For the non-induced setting, these are simply inde-

pendent computations. We perform this parallelism, and present

the speedup we achieve in Fig. 6c. As expected, there is roughly a

1.5-2 factor speedup, corresponding to the most expensive orbit to

compute.

VOC distributions: As a demonstration of EVOKE, we plot the

VOC distribution (also called graphlet degree distribution) of var-

ious graphs. To get cleaner figures, we plot the Complementary

Cumulative Distribution (CCD): for x , we plot the fraction of ver-

tices whose orbit count is at least x . This is plotted for Orbit 70 (in

induced 5-clique minus edge) in Fig. 7a and for Orbit 17 (center of

induced 4-path) in Fig. 7b. We stress that these induced counts are

typically harder to obtain than the non-induced counts.

For Orbit 17, we observe that the largest count is more than

trillions, showing the challenges in exact counting. Also the dis-

tribution of tech-as-skitter has a bigger dropoff in the tail,

which may be indicative of the path structures in AS networks.

The web-google-dir graph has a sharp dropoff at the end as well.

We see that Orbit 70 distributions are quite different over the graphs,

unlike Orbit 17, where the tails are similar for three of the graphs.

The counts in Citation-network V2 are much smaller, suggesting

there are not many 5-cliques missing edges.

In Fig. 7c, for the graph web-google-dir, we plot the VOC of

the three different orbits (15-17) of the induced 4-path. Observe

how the distribution for Orbit 15 (the start/end) is significantly

different from Orbit 17 (the center), underscoring the fine-grained

information that orbits provide over vanilla counts.

Graph mining through orbit counts: As another demonstra-

tion, we focus on the citation network DBLP-Citation-network

V5, where we have metadata associated with vertices (papers). We

found that the paper with the largest count of Orbit 17 (center of

induced 4-path) is the classic book łC4.5: Programs for Machine

Learningž by Ross Quinlan. On the other hand, the paper partic-

ipating in the most 5-cliques is the highly cited VLDB 94 paper

łFast Algorithms for Mining Association Rules in Large Databasesž
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